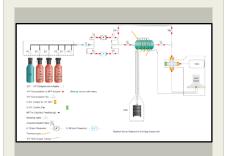
Radionuclide Absorption Demonstration System

NASA

Completed Technology Project (2016 - 2017)

Project Introduction


After a nuclear thermal rocket (NTR) is test fired, the engine's reactor is operated in a cool-down mode during which radioactive exhaust by-products continue to be made, yet at a much lower rate. Extended operation of a Thermal Propulsion Capture System (TPCS) where all exhaust products are totally contained will be uneconomical during that longer term cool-down phase. Instead, a Regenerative Radionuclide Adsorption and Disposal System (RRAADS) could be implemented to trap radioactive emissions. This project built and tested a small scale demonstration system to verify that development of the technology is feasible.

Anticipated Benefits

This effort is validating existing analytical models and enabling implementation of an operational RRAADS for the cool-down cycle of the NTR TPCS. This technology will further decrease any radioactive product releases to the environment to very low levels during the cool-down phase and provide benefit to the larger nuclear power industry as well.

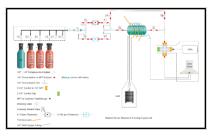
Primary U.S. Work Locations and Key Partners

Schematic of the test system implemented by USM for nitrogen and helium balance gas flows

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Images	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Radionuclide Absorption Demonstration System



Completed Technology Project (2016 - 2017)

Organizations Performing Work	Role	Туре	Location
★Stennis Space Center(SSC)	Lead Organization	NASA Center	Stennis Space Center, Mississippi
Marshall Space Flight Center(MSFC)	Supporting	NASA	Huntsville,
	Organization	Center	Alabama
University of	Supporting	Academia	Hattiesburg,
Southern Mississippi	Organization		Mississippi

Primary U.S. Work Locations		
Alabama	Mississippi	

Images

Project Image

Schematic of the test system implemented by USM for nitrogen and helium balance gas flows (https://techport.nasa.gov/imag e/35797)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Stennis Space Center (SSC)

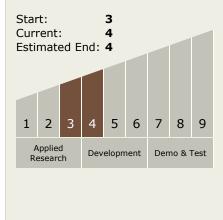
Responsible Program:

Center Innovation Fund: SSC CIF

Project Management

Program Director:

Michael R Lapointe


Program Manager:

Ramona E Travis

Principal Investigator:

Glen A Guzik

Technology Maturity (TRL)

Center Innovation Fund: SSC CIF

Radionuclide Absorption Demonstration System

Completed Technology Project (2016 - 2017)

Technology Areas

Primary:

- **Target Destinations**

Mars, Others Inside the Solar System

